International Baccalaureate Baccalauréat International Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Monday 15 November 2010 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 7]

Find $\lim _{x \rightarrow 0}\left(\frac{1-\cos x^{6}}{x^{12}}\right)$.
2. [Maximum mark: 16]

Determine whether or not the following series converge.
(a) $\sum_{n=0}^{\infty}\left(\sin \frac{n \pi}{2}-\sin \frac{(n+1) \pi}{2}\right)$
(b) $\sum_{n=1}^{\infty} \frac{\mathrm{e}^{n}-1}{\pi^{n}}$
[7 marks]
(c) $\sum_{n=2}^{\infty} \frac{\sqrt{n+1}}{n(n-1)}$
[6 marks]
3. [Maximum mark: 9]
(a) Using the Maclaurin series for the function e^{x}, write down the first four terms of the Maclaurin series for $\mathrm{e}^{-\frac{x^{2}}{2}}$.
(b) Hence find the first four terms of the series for $\int_{0}^{x} \mathrm{e}^{-\frac{u^{2}}{2}} \mathrm{~d} u$.
(c) Use the result from part (b) to find an approximate value for $\frac{1}{\sqrt{2 \pi}} \int_{0}^{1} e^{-\frac{x^{2}}{2}} \mathrm{~d} x$. [3 marks]
4. [Maximum mark: 13]

Solve the differential equation

$$
(x-1) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=(x-1) \mathrm{e}^{-x}
$$

given that $y=1$ when $x=0$. Give your answer in the form $y=f(x)$.
5. [Maximum mark: 15]

Consider the infinite series

$$
\frac{1}{2 \ln 2}-\frac{1}{3 \ln 3}+\frac{1}{4 \ln 4}-\frac{1}{5 \ln 5}+\ldots
$$

(a) Show that the series converges.
(b) Determine if the series converges absolutely or conditionally.

